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In this paper, we study the receptivity of a typical free shear layer to pulse-type and 
periodic excitation. We do this by solving the initial-value problem completely and 
studying its long-time behaviour. This leads to a wave packet for the pulse. By the 
superposition of many wave packets, we generate a spatial instability mode when the 
flow is convectively unstable. This establishes a general and simple relationship 
between the receptivities for pulse-type and sinusoidal excitations. We find that a 
shear layer is very receptive to high-frequency disturbances that are generated near 
the centreline of the layer. 

1. Introduction 
In the classical study of the stability of parallel shear flows, the concept of normal 

modes is an indispensable tool. Historically, most flows have been studied under the 
assumption of temporal stability (e.g. Betchov & Criminale 1967 ; Drazin & Reid 
1981), although in the last twenty years it has become increasingly clear that the so- 
called spatial instability modes are more closely related to the disturbances, observed 
in experiments on sinusoidally excited flows, than are the temporal ones (for early 
and recent accounts, see Michalke 1965 and Gaster, Kit & Wygnanski 1985). If a 
mode is assumed to be proportional to [exp (wt) exp ( + ikx)], then in the temporal and 
spatial theories we respectively have : k,  = 0, w complex ; wR = 0, k: complex ; where 
the subscripts R and I denote the real and imaginary parts of a complex number and 
w = w ( k )  is the complex dispersion relation. 

While studies of normal modes can usually shed light on the stability of the flow, 
such studies say nothing about when and how the modes actually evolve and how their 
amplitudes are related to the strength of the input disturbance. The relationship 
between the mode amplitude and the external disturbance is called the receptivity of 
the flow. Our main objective is to study the receptivity of mixing layers. Quite unlike 
the work of Goldstein (1983), in which he examines the generation of instability 
waves by free-stream disturbances incident on a flat-plate boundary layer, the 
present paper deals with the generation of instability waves by the ‘creation’ (say, 
by a small oscillating flap) and convection of concentrated vorticity within a mixing 
layer. 

The study of receptivity is intimately connected with the initial-value problem 
and the excitation of the various instability modes by the initial disturbance. A 
pioneering study along these lines was made by Criminale & Kovasznay (1962). They 
examined the evolution of localized disturbances in a laminar boundary layer and 
described the physical characteristics of the wave packets into which these 
disturbances eventually develop. They also advanced the very useful and powerful 

6 FLM 187 



156 T .  F .  Balsa 

idea of approximating the growth ratelwavenumber relationship by the osculating 
quadratic surface centred about the most unstable vector wavenumber. This 
approximation may be used to develop a unified and highly geometric theory for 
wave packets in arbitrary parallel shear flows. 

In his classic work on wave packets in boundary layers, Gaster (1968, 1975) 
continued the departure from a purely modal analysis. He considered the 
simultaneous evolution of many unstable modes and found that these interfered with 
each other, so that the principal contribution of all these modes a t  a given point in 
the flow and a t  a given instant of time came from a single wavenumber, k = k(x, t ) ,  
which is, in fact, complex. Because of this, Gaster could deduce many of the 
important and interesting properties of the packet, without explicitly addressing the 
receptivity issue or solving the initial-value problem. 

A very similar study was carried out by Huerre & Monkewitz (1985) (for a free 
shear layer) with a totally different objective. Their principal aim was to study the 
conditions under which spatial instability modes evolve in a harmonically excited 
flow. They do this by studying the branch-point singularities of the complex 
dispersion relation for a family of tanh base velocity profiles. Roughly speaking, they 
find that spatial instability modes cannot evolve when there is a significant amount 
of reverse flow. In this case, the instability is termed absolute. On the other hand, 
when the external streams are coflowing, the instability is convective, and the large- 
(x, t )  behaviour of the solution is identical with that of the spatial instability mode 
a t  the excitation frequency o*. 

The present work, though closely related to these very important previous papers, 
takes the analysis and physics one step further, by establishing and studying the 
explicit functional relationships between the input disturbances and the amplitudes 
of the wave packet, and of the spatial instability mode, they generate. Our basic 
building block is a packet, and we begin with its rigorous derivation and a review of 
its characteristics in a particularly simple base flow. 

Next, we discuss one of the new ideas of this paper. This deals with the 
representation of a spatial instability mode in terms of wave packets. It is shown how 
the superposition of a certain set of packets leads to a mode - this result is important 
for two reasons. First, it establishes a very simple and general connection between 
the amplitude of the packet and that of the mode ; the former is simply the (complex) 
group velocity multiplied by the latter. Secondly, this superposition idea proves 
almost indispensable in the study of three-dimensional spatial instability modes 
generated by sinusoidally oscillating and spatially compact sources. 

Finally, we study the receptivity of a free shear layer to pulse-type and 
harmonically oscillating disturbances. The base velocity profile that we use is shown 
in figure 1:  i t  consists of three straight-line segments joined by smooth curves, 
confined to  the immediate edges of the layer. The entire velocity profile is infinitely 
differentiable. The high-Reynolds-number viscous instability of this flow (both 
temporal and spatial) is almost identical with the inviscid instability of the 
corresponding piecewise linear profile (Balsa 1987). Therefore, closed-form expressions 
can be found for all quantities of interest (e.g. dispersion relations), and all 
mathematical manipulations (e.g. contour deformations) can be justified rigorously. 
This flow serves as a good model for more general free shear layers as confirmed by 
our comparison of wave packets in this flow and in a tanh profile. 
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this study 
FIGURE 1. Geometry of the problem. 

2. Formulation of the problem 
Let ( x , y )  be a Cartesian coordinate system and denote time by t .  Consider a 

unidirectional, incompressible, and inviscid parallel shear flow a t  constant pressure 
whose velocity components are [U(y),O] and suppose this flow is perturbed by a 
small disturbance whose precise form will be specified momentarily (figure 1 ) .  
The disturbance stream function Y = Y(x, y ,  t )  and the perturbation vorticity 
5 = y(x, y, t )  are assumed to satisfy the inviscid linearized equations of motion 

V2Y = -5, ( la)  

a[ a[ d2U 
at ax dy 
- + u - - v ~  = -sl(x)S(y-yy,)S(t) ,  

where V2 = a2/ax2+a2/ay2 is the two-dimensional Laplacian and (u, w )  = (aY /ay ,  
-a Y p x )  are the perturbation velocity components in the x- and y-directions, 
respectively. 

The perturbations in the flow are produced by a two-dimensional compact vortex 
dipole which is deposited into the flow a t  the point x = 0 and y = yo. This vortex 
dipole is represented by the right-hand side of (1 b ) .  The transverse source coordinate 
yo is arbitrary, and there is no loss in generality by taking the x-coordinate of the 
dipole to be zero. The vortex dipole is deposited instantaneously at t = 0 but, of 
course, once it is placed in the flow, it will persist and be convected by the flow. 
Implicit in the previous remarks is the observation that S(6) denotes the usual delta 
function, with support a t  6 = 0, and &(t) = dS(c)/d<. 

We shall refer to Y = Y ( x ,  y, t )  as the Green function, although it would be more 
customary to do so for the case in which &(x)  in ( l b )  is replaced by S(x). We use 
# ( x )  for two reasons. First, mathematically speaking, we wish to ensure that the 
Fourier transform (in z) of Y exists in the classical (i.e. non-distributional) sense for 
all values of time. This clearly facilitates the contour deformations at infinity. Had 
we used 6(x) in place of &(x) ,  the stream function a t  t = O+ would have been 
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Y N l0g[x2+(y-yo) 1:; - this function does not have a classical Fourier transform. 
Secondly, physically speaking, a single dipole provides a crude representation of the 
flow field produced by a trailing-edge flap (Gaster et al. 1985) which is moved quickly 
(i.e. impulsively) up and then stopped. Owing to the sharp edge of the flap, this 
motion generates starting and stopping vortices of opposite signs ~ these we 
interpret as the two elementary vortices comprising the dipole. It seems quite 
reasonable to assume that oscillating ribbons and flaps generate a continuous train 
of dipoles and the excitation of the instability waves in a mixing layer occurs through 
the deposition of these dipoles in the flow. Finally, once Y is known, the solution of 
our governing equations, with an arbitrary right-hand side in ( l b ) ,  can be written 
down immediately by formal convolution integrals. In  fact, in $5, we use the forcing 
function [ -6'(x)6(y-yo) cos (w* t ) ]  to  represent a harmonically oscillating dipole 
(o* = radian frequency of oscillation), and the solution for the source problem is the 
present solution divided by (-ik), where k is a suitable (complex) wavenumber. 

The initial and boundary conditions are as follows : 

Y = y = 0 for t < 0-, 

u , v , ~ + o  for (x2+y2)i+co. 

In  other words, we are looking for the causal response of the flow generated by the 
dipole. It will prove to be convenient to transfer the initial conditions to t = O+ by 
integrating (1 b)  across t = 0 to obtain the vorticity and then solving (1  a).  The final 
results are 

5(x,y,O+) = - 6 ' ( X ) ~ ( Y - - Y o ) ,  (3a )  
1 X 

Y(x,y,O+) = - 
27t x2 + (y - yo)2 ' 

which clearly coincide with the classical flow generated by our vortex dipole in the 
absence of a mean shear. For t > 0, the right-hand side of (1 b)  vanishes, so we may 
think of ( l ) ,  ( 2 b )  as a homogeneous problem (for t > Of)  with initial conditions 
(3). 

Before we write down the Green function, there are several issues that need 
discussion. First, the perturbations are assumed to be incompressible and inviscid. 
The assumption of incompressibility carries with it the usual restrictions to low- 
Mach-number flows. On the other hand, the assumption of zero viscosity is more 
difficult to justify with any kind of generality. It is clear from figure 1 that the 
general base velocity profile under consideration, U = U(y), will have (exactly) one 
inflexion point and is likely to be unstable to inviscid perturbations. This implies 
that, in certain regions of complex wavenumber space, the inviscid and high- 
Reynolds-number instabilities of the base flow are virtually identical. (For example, 
this is certainly the case for U - tanhy.) On the other hand, there also exist regions 
in wavenumber space in which the solutions to the Rayleigh and Orr-Sommerfeld 
equations are quite different (even in the case of very large Reynolds number) ; in 
fact, in these latter regions the inviscid results are physically meaningless. 

Unfortunately, these various regions in complex wavenumber space have not been 
identified as yet, even for the tanh profile. The situation is not much different for 
other flows, such as wakes or jets (Mattingly & Criminale 1972 ; Betchov & Criminale 
1966). Because of this it is very difficult to generally justify the validity of the 
contour deformations used in the inversion of the Fourier integrals (see $4) on the 
basis of purely inviscid theory. On the other hand, the spectrum of the 
Orr-Sommerfeld operator (for the tanh profile) is not known (the work of Tatsumi, 
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Gotoh & Ayukawa 1964 is very limited in this context) so that we are forced to 
examine a model problem whose instability characteristics (viscous as well as 
inviscid) are rather incompletely understood. 

For these reasons, in this paper, we shall study the characteristics of the Green 
function in a base flow, which is also shown in figure 1.  Essentially, U = U ( y )  is linear 
between the two edges of the shear layer (at y = f l ) ,  and this straight-line segment 
is joined to the external streams in two very narrow regions a t  the shear-layer edges. 
The entire profile is assumed to be infinitely smooth. The viscous instabilites of such 
a profile were studied elsewhere (Balsa 1987). It was found that, a t  large Reynolds 
numbers, these are virtually identical with the inviscid instabilities of a piecewise 
linear profile of Rayleigh a t  all finite (complex) wavenumbers. This profile is given 

[ U 1  = const ( y  > l ) ,  

u ( y )  = um+gAuy (Iyl G I ) ,  (4) \ U ,  = const ( y  < - l) ,  

where Um = $(U,  + U,) and AU = U ,  - U,. 
The point is that the inviscid Green function of our piecewise linear profile (4) is 

only very slightly different from its viscous counterpart for a class of base velocity 
profiles described in the previous paragraph (see also figure 1). Since the initial-value 
problem ( l ) ,  (2), with U(y) given by (4), can be solved in closed form, we have the 
distinct advantage of providing functional relationships among variables. Because of 
this, the piecewise linear shear layer serves as a useful model for more general free 
shear flows, especially in the context of complex three-dimensional disturbances or 
unsteady effects (Greenspan & Benney 1963). In fact, the quantitative differences 
between wave packets in the tanh and piecewise linear shear layers are quite 
small. 

The evolution of certain wavelike disturbances in unbounded shear flows, with 
spatially uniform shear rates, has been studied by Craik & Criminale (1986) in a very 
general setting. These so-called Kelvin waves may also be described, in terms of 
a modal decomposition, as arising from the continuous spectrum of the Orr- 
Sommerfeld operator. It is possible to write our solution (see (9)) as a superposition 
of Kelvin (i.e. continuous) and Rayleigh (i.e. discrete) modes, and indeed this 
approach of superposition has been explicitly used by Farrell (1982, 1984) in the 
study of atmospheric problems. 

Farrell (1984) finds that for certain initial conditions, the disturbances in a 
baroclinic instability may initially grow to large enough amplitudes, owing to the 
continuous modes, that nonlinear effects become important before the (exponential) 
normal modes develop to any significant degree. We do not believe that this scenario 
usually occurs in free shear flows, in view of the success of Gaster et al. (1985) in 
describing the large-scale structures using Rayleigh modes. The coupling between 
continuous and discrete modes occurs a t  boundaries and interfaces (Farrell 1984). 

Perhaps it is also wise to say a few words about the two-dimensionality of our 
assumed flow. Certainly, the evolution of three-dimensional wave packets and 
instability waves is a very relevant and important subject and, in principle, our two- 
dimensional results may be obtained from the corresponding three-dimensional ones 
by the ‘method of descent of dimension ’. This procedure is usually quite cumbersome 
and, almost always, two- and three-dimensional results are obtained from separate 
analyses. Our considerable interest in detailed two-dimensional results is motivated 
by a parallel experimental effort (Glezer, Wygnanski & Balsa 1986). 
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3. The Green function 
Our governing equations ( la ,  b )  are solved by Fourier transforms in the z- 

direction. Introduce transform pairs by 

where k is the streamwise or axial wavenumber. In general, k is complex and C is a 
suitably chosen contour. The transforms of ( la ,  b )  are, for t 2 O + ,  

where, for our piecewise linear- profil?, U” = 0. Equations (6a, b )  are partial 
differential equations in (y, t )  for Y and < at parameter values of the wavenumber k. 
The initial conditions a t  t = Of are 

Note that 
[+k fork, > 0, 

K = (k2)1 = 
1 - k  for k, < 0, 

where k, = Re (k). This implies that the origin is a double branch point with the two 
branch cuts extending along the positive and negative imaginary axes. Therefore, the 
solution will have certain symmetries about the k, = 0 line, and it is sufficient to 
confine our attention to the half-space k, > 0. 

For our piecewise linear profile, the vorticity equation (6 b )  can be integrated once 
and for all. The solution for the stream function Y is readily expressible as linear 
combinations of exp ( f K Y ) .  The algebra is quite involved and, for this reason, some 
of the details and intermediate results are relegated to the Appendix. Here, we 
remind the reader that across the interfaces, whose mean locations are a t  y = f 1, the 
Fourier transforms of the transverse velocity component 6 and the pressure are 
continuous. Finally, we must consider three separate classes of problems depending 
on the transverse location of the vortex dipole, according to the inequalities yo > 1,  
lyol < 1,  and yo < - 1. By far the most important case is the second one, in which the 
shear layer is excited by a source that is within the layer. We now give the solution 
for this case; the solutions for the other cases may be found in the Appendix. 

Perhaps it is worthwhile to point out that these solutions are obtained without the 
use of a Laplace transform in time ; in the problem under consideration, a Laplace 
transform is not necessary. 

In order to keep the equations and results manageable, we focus on the transverse 
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velocity component v a t  the upper interface y = + 1 .  Similar results hold for the other 
physical quantities of interest. From the Appendix, we have 

J -m 

+ F,(k) exp [w, (k) t ]  + a(k) exp ( -  ikU, t )>  dk. (9) 

Note that the Fourier inversion contour is nominally chosen along the real axis 
(although this contour will be deformed momentarily) and (9) is valid for all positive 
values of time. Equation (9) is an exact solution to ( l ) ,  ( 2 ) .  Very roughly speaking, 
the initial disturbance in the flow is resolved into two Rayleigh modes with 
dispersion relations w,(k) (j = 1 , 2 )  and a ‘convected mode’ represented by the last 
term in (9). 

The various expressions in (9) are as follows: 

where 

A = h(k)  = are-4.- (1 - 2K)’];, 

g ( k )  = (gKyo)2+h2(k).  (10i) 

Recall that yo is the transverse coordinate of the dipole, U ,  = U(yo), U ,  = 
t(Ul + U,), and AU = U ,  - U,. 

In ( lOc) ,  we choose the principal square root such that 2: maps the complex 
2-plane cut along the negative real axis onto the half-space Re (2;) > 0. This can 
be accomplished very simply on the computer by calling the FORTRAN intrinsic 
function CSQRT. Furthermore, without any loss of generality, we can assume that 
AU > 0 so that w1 unambiguously represents the unstable dispersion relation for 
k, > 0. The branch-point singularity of w1 is discussed in the next section. 
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4. The long-time behaviour of the Green function-wave packet 
Our principal objective in this section is the derivation of the long-time behaviour 

of w(x, 1, t ) .  This yields a wave packet whose spatial and temporal characteristics are 
obtained by applying the saddle-point method to (9). The method, pioneered in this 
context by Gaster (1968), is now well known. Although we shall show a couple of 
interesting results for wave packets, our main interest in them stems from the fact 
that spatial instability modes can be interpreted very nicely in terms of these 
packets. This idea is discussed fully in the next section. In addition, we shall 
rigorously show the kind of contour deformations that are permissible in the Fourier 
inversion  this can be done because our solution is known in closed form. Note that, 
in general, it is not possible to close the integration contours a t  infinity. 

Since the wave packet is convected by the flow, it is simplest to observe it in a 
moving coordinate system. Let 

where G is the observer speed. (It turns out that G is also the (real) group velocity.) 
A related, but somewhat more useful, quantity is 

x = Gt, ( I l a )  

so that expression (9) for v(x, 1 , t )  may be rewritten as 

3 

(27c)h(x, 1 , t )  = C l y & ( k )  exp[hj7]dk+c.c., (12a)  
j=l 

where T = AUt > 0, F 3 ( k )  = a(k) ,  c.c. denotes the complex conjugate of all the terms 
preceding it on the right-hand side of an equation, and 

hj = hj(k,29) = ik(g- i ) fh(k)  f o r j  = 1,2, ( 1 2 b )  

h, = h,(k, 9) = ik 9+- [ U:fO] 

Note that Pj(j = 1,2,3)  do not depend on the external streams U, and ti,. Insofar 
as the long-time behaviour of the solution is dominated by the unstable mode (i.e. 
Fl and hl),  all (inviscid) wave packets in a given base flow are dynamically similar 
provided that the scaled variable r = AUt is used to measure time and the streamwise 
behaviour is expressed as a function of 9. 

We now wish to evaluate (12a) for large values of time but a t  fixed values of G or 
9. The integrand of (12a)  turns out to be an analytic function of k for k, > 0, 
although this result is by no means obvious from a casual inspection. Very briefly, 
h(k) has a branch-point singularity a t  k = k, z 0.6392 and no other singularity in 
the finite part of (complex) wavenumber space. On the other hand, 9 ( k )  has a double 
zero a t  the origin and a simple zero on the real axis. This latter zero lies in the region 
k,  2 Ic, and depends on the location of the dipole yo. In spite of these zeroes of h(k) 
and 9 ( k ) ,  the total integrand of (12a) has no poles or branch-point singularities! The 
last remark should be quite obvious from the problem formulation, as expressed by 
(6) and (7).  Because of these observations, the path of integration may be chosen 
slightly above (or below) the real axis. 

On the other hand, if the individual terms in the integrand are considered 
separately [e.g. Fl exp (h,  T ) ] ,  which is really quite necessary for the efficient 
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FIGURE 2.  Growth rate of unstable mode in piecewise linear base flow as a function of 
wavenumber ( U ,  = 1 ,  U ,  = 0). 

evaluation of (12a), the branch cut and poles arising from A(k)  and g ( k )  must be 
taken into account. 

It is worthwhile to digress a t  this point to discuss the temporal stability of our base 
velocity for the special profile U, = 1, U, = 0, and AU = 1. In this case, k, = 0 and 
0 < k, < k,, where k ,  is the neutral wavenumber (obtained numerically). The phase 
velocity is U ,  = t (Ul  + U,) = $ and the growth rate oR is given in figure 2, where 
wR is the real part of the unstable eigenvalue wl. Comparing these results with those 
of Michalke (1964) for the tanh profile, we find very good semiquantitative 
agreement for the growth rates and perfect agreement for the phase velocity. It is 
only in the vicinity of the corresponding neutral points that the two growth rates 
differ. For the purposes of the present analysis, this difference is largely irrelevant 
since the dominant contribution to integral (12a)  comes from a complex wavenumber 
that is far from the neutral point. The point k = k ,  is a branch point, and the branch 
cut (of wl, w,, or A )  extends from k ,  to plus infinity along the real axis. 

Because of the presence of h(k)  (see ( l o b ) )  in F, and F2, both of these latter 
functions have a square-root singularity at the neutral point k = kN and a branch cut 
along the real axis to the right of k,. In  addition, for yo > 0 , 9 ,  has a pole on the 
branch cut a t  k = k ,  > k ,  arising from the zero of the determinant, g ( k , )  = 0. (For 
yo < 0, the same remark holds for PI ; for yo = 0, Fl and 9, have simple poles a t  
k = k ,  = k, . )  Note that k, is a monotonically increasing function of (yol such that 
k ,  = k ,  for yo = 0. Finally, a(k)  = F3 has a simple pole a t  k , ;  the singularities a t  
k = 0 are removable. 

We are now in a position to evaluate (12 a )  as r = AUt + co. We shall do this for 
the case Q > 0.5 (for Y < 0.5, we can reflect the contours obtained in the present case 
about the real axis). The nominal contour of integration is chosen very slightly above 
the real axis (figure 3). 

The principal contribution of the third term ( j  = 3) of (12a)  for large times 
comes either from the endpoint k = 0 or the pole k = k,, depending on whether 
[%+ ( U 2 -  Uo) /AU]  is positive or negative. In  either case, this contribution is no 
larger than order unity. 
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FIGIJRE 3. Deformed contours of integration for wave packet : (a )  for original integral and Fa, 
( b )  for PI, and (c) for g2. 

For the second term ( j  = 2),  we deform the contour in the first quadrant into the 
curve Im (h,) = 0 which passes through the origin and extends to infinity. There is no 
difficulty in closing the contour a t  infinity with zero contribution to the integral. 
Along this deformed contour, Re (h,)  is non-positive and monotonically decreasing. 
Hence, the integral is of the Laplace type, whose dominant contribution comes from 
k = 0. This contribution is at most of the magnitude O ( l / t )  as t --f 00. 

Finally, consider the first term ( j  = 1 )  of (12a).  Here, we have a saddle point in the 
first quadrant. We deform the nominal contour of integration in the following 
manner. From the origin k = 0, we go along the level curve Re (h,)  = 0 in the first 
quadrant until we intersect the curve of constant phase through the saddle point. 
This can always be done. We then jump onto this latter curve and pass through the 
saddle point so that Im (h,) = const and Re (h,)  reaches a local maximum (positive) 
a t  the saddle point. Finally, this saddle-point curve always intersects the top of the 
branch cut to the right of the neutral point, and we integrate out to infinity along 
the top of the branch cut. It is not possible to deform the contour at infinity. The 
dominant contribution to the integral comes from the saddle point since Re (h,)  is 
positive there. Contributions from the endpoints of the integral or (possibly) from the 
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pole a t  kp are exponentially small relative to the saddle-point contribution. We now 
calculate this dominant contribution. The various contours are shown in figure 3. 

For notational simplicity, we drop the subscript on h, so that h(k,  9) = h,(k,  3).  
Then the saddle point k, = k,(Y) satisfies 

hk(kO, 9) = (13) 

(Duff & Naylor 1966, p. 318), where h, = ah/ak. Recall that the velocity Y is real but 
k,  = k,(Y) is, in general, complex. Hence, for large values of time, (12a) becomes 

where 

and 

1 I 
v(z,  1 ,  t )  = Sl(k,) exp [7ho(S)]  + c.c., [ -~ho+(Y)] i  

a2h 
hkk = @’ 

The reader will notice the extreme care that we have exercised in deforming the 
contour of integration and in studying the global singularities of the integrand in 
(12a). This is a pivotal step in order to ensure that the correct saddle point is chosen 
in the evaluation of the integral (Mattingly & Criminale 1972). Even in the relatively 
simple case of the piecewise linear profile, both of the functions h,(k, ’3) and h,(k, ’3) 
have many saddle points, but only one of these is admissible in the sense of Bleistein 
& Handelsman (1975, p. 267). Very crudely speaking, however, the dominant 
contribution to the Green function a t  each observer velocity Y comes from ‘the’ 
saddle point of the ‘most unstable mode’. We believe that this long-time solution 
may be obtained from an inviscid analysis since the flow is unstable. On the other 
hand, if the initial disturbance contained only stable wavenumbers, one could not 
have obtained the long-time solution without the inclusion of viscosity. Results 
along the lines leading to (14a) have been obtained by Criminale & Kovasznay 
(1962), Gaster (1968), and Huerre & Monkewitz (1985); one objective of this paper 
is to compare the characteristics of wave packets in the tanh and piecewise linear 
profiles. A second objective is to describe a (linear) spatial instability mode as a 
superposition of packets. 

5. Spatial instability 
The subject of spatially growing modes or simply spatial instability is not without 

controversy (Drazin & Reid 1981, p. 147), yet experimental data for periodically 
forced shear layers clearly indicate that, in the initial part of the layer, where the 
disturbances are still relatively weak, linear spatial stability theory provides better 
agreement with data than does temporal theory. (For early and recent accounts, see 
Michalke 1965 and Gaster et al. 1985.) The purpose of the present section is to show 
how a spatial mode arises from the initial-value problem via a suitable superposition 
of wave packets. This is diametrically opposite but, of course, complementary, to the 
work of Gaster (1975) in which a wave packet in a boundary layer is synthesized from 
a large set of instability modes. 

Historically, the initial-value problem has been attacked by a combination of 
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Fourier-Laplace transforms. In  the present paper, we have avoided the use of a 
Laplace transform in time for the sake of simplicity. In  a similar spirit, the solution 
to the harmonically forced shear layer is expressed in terms of a Duhamel-type 
integral 

$(x, y, t )  = [ w x ,  y, T) cos [w*(t-T)I dT, (15a) 

(15b) - - + 1 iw, t  [ Y(x, y,T)e-iw*TdT+c.c., 

where +(x, y, t )  is the stream function associated with the harmonic problem. In this 
case, the forcing term on the right-hand side of (1 b)  is replaced by [ - #(x) 6(y-yo) 
cos (o* t ) ] ,  where o* is the (real) frequency of the oscillations. Hence, vortex dipoles 
are introduced into the flow continuously a t  x = 0, y = yo in a way that is roughly 
reminiscent of the effects of an oscillating splitter-plate flap. Note that in (15), 
Y(x, y,T) is the Green function. 

We are interested in the solution of the harmonic problem for large but fixed values 
of the streamwise coordinate x, in the 'steady state ' as t + co. The meaning of (15 b) 
becomes especially clear in terms of an (x,T)-wave diagram (figure 4). The pulse 
generating the fundamental solution is emitted a t  x = T = 0. In the shaded region 
surrounding the origin, the Green function evolves into its asymptotic structure. In  
the wedge bounded by x/T = U,, U ,  this asymptotic structure is precisely the wave 
packet (14a). We have not calculated the asymptotic solution outside the wedge 
(although we could easily do so) because it is, in fact, exponentially small (in a 
relative sense). 

Now the range of integration in (15 b) is the interval 0 Q T < t so that as t + 00 the 
observer point D, with coordinates (x, t ) ,  recedes to infinity. Therefore, the principal 
contribution to integral (15 b) comes from the entire interval BC ; this interval contains 
the exponentially large part of the wave packet. The contributions from intervals 
AB and CD are exponentially small (in a relative sense) and, therefore, negligible. 
Clearly, the previous remarks are valid as long as x is large enough (so that the line 
x = const does not intersect the shaded region of figure 4) and U ,  and U ,  are positive. 
The case where U ,  < 0 will be discussed a t  the end of this section ; in this latter case, 
the point D is always within the wedge as t --f 00. 

From (14a), we see that Y(x,y,T) depends explicitly on T, as well as implicitly 
through the variable Y = (x/T - U,)/AU. This suggests the introduction of a new 
variable of integration, say 5 = (x/T- U2)/AU. After substituting (14a) into (15b), 
we arrive a t  one of our central results, 

xi eiw*t fi { exp [ x ha(()  -iw*/AU] 
v(x, 1,  t )  = ~ 

2AU 5+ U2IA.U 

where CC(w,) denotes the complex conjugate of the term immediately preceding it,  
provided that we first replace o* by ( - w * ) .  Equation (16) is valid for large positive 
x. Note that the quantities needed in the evaluation of (16) are defined in (10) and 

Roughly speaking, (16) represents the spatial instability mode (at frequency w * )  
as a superposition of wave packets. All the packets that have reached the point x a t  
time t contribute to  the integral; the natural variable of integration is 6, which is 

(14); AU = U,-U,  > 0. 



Free-shear-layer receptivity to two-dimensional external excitation 167 

4 

Location 
of pulse 

FIGURE 4. Wave 
observer 

diagram of the Green function in propagation space (z, T) for the piecewise 
linear profile. 

essentially the modified observer velocity ’3. If (16) indeed represents a spatial mode, 
its large-x dependence must be of the form exp (ik, x), where k, is the wavenumber. 
Thus, the xi factor in the numerator must be cancelled by an identical factor in the 
denominator. This implies that the integral in (16) should contain a factor x-a for 
large x;  therefore, the use of the saddle-point method for the evaluation of the 
integral is strongly suggested. This evaluation is done by analytically continuing the 
integrand of (16) into the complex 6-plane and then by deforming the contour of 
integration through the saddle point. This can always be done rigorously. 

These contour deformations may be described very conveniently in terms of figure 
3 ( b ) .  From the origin (6 = 0 ) ,  the contour is deformed along a short segment that 
moves into the first quadrant. Along this path, the exponential in (16) is purely 
oscillatory and the main contribution to the integral comes from 5 = 0;  this 
contribution is not greater than O(l/x) since the path is a t  ‘sea level’. At a certain 
point along this path, we switch to the contour that takes the integration to the right 
and up through the saddle point and then down to ‘sea level’ again. Along this latter 
contour, the imaginary part of the argument of the exponential in (16) is constant 
and the principal contribution to the integral comes from the saddle point. Finally, 
it is possible to integrate from the saddle-point path to 6 = 1 along ‘sea level’. The 
contribution from this third portion of the contour is once again no greater than 
O(l/x). No singularities are crossed during this contour deformation. The fact that it 
is possible to start and end the integration at ‘sea level’ comes from the observation 
that ’3 = 6 = 1 and 9 = 6 = 0 correspond to the leading and trailing edges of the 
wave packet. At these points, the total growth rate vanishes. 

The formal calculation of the saddle point is quite straightforward once it is 
realized (see (14b), (12 b)) that 

0- dh (6 )  
J C  - iko(6). 
Ub 

The saddle point 6 ,  satisfies 
iw* = w,[~,(5*)1> 

where ko(&) is the analytic continuation of k0(Q) (see (13)). We recognize (176) as a 
statement of spatial instability : At the saddle point c*,  the complex wavenumber 
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k, = k,,([*) is such that the real part of the unstable dispersion relation, w l ( k , ) ,  
vanishes and the imaginary part is equal to the forcing frequency w * .  

The actual evaluation of the integral in (16) reconfirms our observation on spatial 
instability. We find (Duff & Naylor 1966, p. 318) 

where, to repeat, k, is defined by 

wl(k , )  = iw, (given) (18b)  

and the unstable dispersion relation w , ( k ) ,  and F,(k) are given by (lOa, b) .  Clearly, 
(18a) is a spatial instability mode. Note that for k, to lie in the right-hand half of the 
complex wavenumber plane, w,  must be negative - this is clear from (10a). 

Our results for the spatial instability mode are valid as long as the two external 
streams are moving in the same direction. On the other hand, when the streams are 
counter-flowing, say U ,  > 0 and U ,  < 0, a spatial instability mode cannot arise from 
the initial-value problem. I n  order to see this, substitute (14a) into (156) to 
obtain 

w(x, 1, t )  = =L[exp(T 2AU [h,(q) -%I} ,T:z:;li+CC(w,) 1 dT + c.c., (19a) 

where 

For large values of 7 = AUt, the dominant contribution to integral (19a) comes from 
the upper limit, since now the point D (see figure 4) is always within the wedge formed 
by the two rays x/T = U,, U,. Furthermore, the variable 7 is slowly changing a t  the 
upper limit, so that (19a) can be approximated as 

where U ,  qm = -- > 0. 
AU 

Clearly (20a)  is not a spatial instability mode since, among other things, it is 
independent of x. When the streams are counterflowing, i t  is possible to take the limit 
of ( x l t )  as t - t  00,  x fixed (this limit is, of course, zero) and still remain within the 
wedge containing the exponentially large part of the Green function. Therefore, all 
the perturbation quantities will grow in time without bound a t  a fixed x. I n  this case, 
the base flow is said to be absolutely unstable. We shall have more to say about this 
and a related concept (convective instability) in the next section. 

6. Discussion and conclusions 
The principal results of this paper are (14a) and (18a): These equations describe 

not only the general structure of wave packets and spatial instability modes - this 
much is already known from the work of Gaster (1968, 1975), Huerre &. Monkewitz 
(1985), and others - but also establish the explicit connection between the 
perturbations in the flow and the external disturbances that generate them. This 
connection, which can be derived only by solving the initial-value problem, contains 
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what might be termed (at least loosely) the ‘receptivity’ of the flow. We are not 
aware of any other work that explicitly examines the receptivity of free shear flows, 
although the paper by Huerre & Monkewitz certainly contains this information 
implicitly. 

With reference to our expression for the wave packet (14a), the receptivity of the 
flow is contained in F l ( k ) .  Although the specific expression for this quantity, as given 
by ( l o b ) ,  is valid for the piecewise linear profile only, the arguments that  lead to the 
spatial instability mode are perfectly general. In other words, if F l ( k )  is a measure 
of the receptivity of the flow in terms of wave packets, then this same quantity 
divided by the (complex) group velocity (which is aw,(k)/ak) is a measure of the 
receptivity of the flow in terms of spatial instability modes (18a). This is a powerful 
new result. Of course, for the spatial instability mode, the amplitude or receptivity 
is evaluated a t  the spatial wavenumber (as a function of the excitation frequency) 
whereas for the packet, it is evaluated at the saddle point (as a function of the 
observer velocity). Therefore, the two receptivities are not proportional to each other 
in numerical value ; they are merely proportional to each other in functional form. 
This, we think, is a useful and general result. We next discuss some of the 
characteristics of wave packets and instability modes. 

6.1. Wave packets 
We begin our discussion of wave packets with some well-known facts. Apart from the 
complex amplitude F l ( k ) ,  the other factors in (14a) are determined completely in 
terms of the dispersion relation. Essentially, the packet grows exponentially in time 
(actually with T ) ,  with growth rate Re [h,(Y)], provided that Y is in the range (0 , i ) .  
The Doppler-shifted frequency is Im [h,(Y)] .  These results are shown in figure 5 .  The 
maximum growth rate a t  Y = 0.5 equals the maximum growth rate of temporal 
stability theory, and the saddle point is on the real axis a t  k = k,  x 0.4 (see figures 
2 and 3). 

The two points Y = 0, 1 define the two bounding rays of figure 4. These two rays 
contain the exponentially large part of the packet a t  each instant in time. The 
growth rate of the packet reaches a maximum for an observer moving at  the shear- 
layer average speed, Urn, and it is symmetric for observers moving faster or slower 
than this speed. The frequency is approximately linear with Y - this implies that 
Re[k,(Y)] is relatively insensitive to variations in Y except a t  the leading and trailing 
edges of the packet. In  other words, the real part of the wavenumber (i.e. the 
‘physical’ wavenumber) is more or less the same throughout the entire packet. The 
centre of the packet is convecting a t  speed Urn. 

It is interesting to compare the growth rates and frequencies of wave packets in 
the piecewise linear and tanh base flows. Figure 5 shows that the difference is largely 
negligible, with one exception. This exception has an important bearing on the 
absolute and convective instabilities of these flows. The upper ray in figure 4 will be 
vertical when U ,  = 0 (piecewise linear) or U ,  x -0.i43Ul (tanh); with the slightest 
amount of reverse flow, the piecewise linear profile is absolutely unstable, whereas 
the tanh profile can tolerate a small amount of i t  before becoming absolutely 
unstable. Therefore, it seems quite reasonable to postulate that  coflowing shear 
layers are convectively unstable and spatial instability modes aways arise in them 
because of periodic excitation. 

In  figure 6, we examine the wave-like shape and amplitude of the packet a t  a 
typical instant of time (say, 7 = 50). We plot the transverse velocity component at  
the upper interface, v (x ,  1, t ) ,  as a function of the dipole location yo. It is interesting 
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FIGURE 5.  Growth rate and Doppler-shifted frequency of wave packet as a function of observer 
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FIQURE 6. Transverse velocity in wave packet a t  upper edge of shear layer as a function of observer 
velocity, Q = ( x / t - U U , ) / A U ,  for parameter values of dipole location: (a )  yo = 0; ( b )  0.6; (c) 0.9; 
( d )  2.0 (7 = 50). 

to note that as the dipole is brought closer to the upper interface, the peak velocity 
there actually decreases (refer to the graphs for yo = 0, 0.6, 0.9). On the other hand, 
a vortex dipole deposited well outside the shear layer (yo = 2) can still produce a 
wave packet of substantial amplitude. In  summary, although a shear layer is most 
sensitive or receptive to disturbances on its centreline, perturbation well outside the 
layer can still produce large fluctuations within the layer. 
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At larger values of time, the general wave-like character of the packet is unaltered, 
although its amplitude is greater because of the exponential growth associated with 
the instability of the base flow. The streamwise extent of the packet is proportional 
to time t ,  and this might suggest, that the packet is dispersive in the classical sense. 
This conclusion is wrong, and perhaps the best counterexample is the one we are 
studying in this paper. Here, as already pointed out in $4, the phase speed is 
i ( U ,  + U,) = const. Therefore, the unstable modes are non-dispersive - the stream- 
wise spreading of the packet arises from variations in growth rate rather than from 
variations in phase velocity with wavenumber. Finally, note that the fractional 
change per wavelength in the amplitude is by no means small, so that the square of 
the amplitude cannot be interpreted as a measure of the local kinetic energy of the 
wave packet. 

6.2. Spatial instability modes 

The general structure of a two-dimensional spatial instability mode is well known 
and is extremely simple [i.e. exp (iw, t )  exp (ik, x)], where the complex wavenumber 
k,, and the excitation frequency w,, are connected by dispersion relation (18b) .  
Mathematically, one thinks of a spatial instability mode as the residue arising from 
the pole a t  w ,  in the complex frequency domain (say, through the use of a Laplace 
transform in time). I n  the present paper we have taken a totally different approach. 
This approach shows how spatial modes can be interpreted as a superposition of wave 
packets. 

Very roughly speaking, a continuously oscillating source emits a wave packet a t  
each instant of time. At the current time, the location and amplitude of each packet 
depends on its emission time - those packets that were ‘born ’ a t  the earliest times 
are the farthest downstream and have the largest amplitudes. For this reason, there 
will be a spatial variation in the amplitude (with x) which, in fact, leads to a spatial 
instability mode. The primary contribution in the superposition integral comes from 
a saddle point rather than a pole (see (17b) ) .  We believe the present method is 
extremely powerful in the study of three-dimensional instability waves generated by 
harmonically oscillating and spatially compact disturbances in the flow. 

At this point, we have to be a bit more precise as to what we mean by the 
receptivity of the flow. Since no general definition exists and our objectives are quite 
modest and specific, we define the receptivity 9, where 

We recognize W as the amplitude of our spatial instability mode ( 1 8 a )  subject to 
the (arbitrary) normalization condition that the Rayleigh mode for the v-velocity 
assumes the value (-i(n/S)$/AU) on y = 1. The factor AU in (21 )  ensures that the 
receptivity depends only on the ‘similarity ’ parameters w, /AU,  U J A U  (essentially 
the inverse of the velocity ratio) and the source location yo. This definition is quite 
adequate because it tells us how the transverse component of the velocity, v ( x ,  y ,  t ) ,  
varies (at fixed x , y  and t )  as the dipole is moved about or its frequency is 
changed. 

A typical result is shown in figure 7 .  A most striking feature of this figure is the 
very large increase (roughly exponential) in the receptivity W with increasing 
frequency, a t  a fixed value of the dipole coordinate, say yo = 0. For example, v ( x ,  1, t )  
would be about ten times larger a t  -w, /AU = 0.45 than a t  0.1 in the initial regions 
of the flow, where any differences in the growth rates may be ignored (i.e. where x 
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FIGURE 7. Receptivity of shear layer as a function of frequency for parametric values of source 
location, U J A U  = 1 (AU = 1). 

is ‘small ’). Perhaps more correctly, our shear layer is ten times more receptive to this 
higher-frequency excitation than to the lower one. We believe that these remarks are 
quite general, and qualitatively apply to other shear layers, although the very rapid 
increase in the receptivity near the neutral point (i,e. at -w, /AU x 0.6) is possibly 
peculiar to our profile. 

An explanation for these results is as follows. Without too much difficulty, the 
Rayleigh equation can be made self-adjoint so that the Green function will become 
symmetric in the field and source coordinates, y and yo, respectively. On the other 
hand, very crudely speaking, an instability mode behaves as exp ( -  ky), y > 0, or 
exp (w ,  y)  since, roughly, - w* - k. Now all the modes are arbitrarily normalized so 
that they assume identical values a t  y = 1 (see just below (21)).  This implies that a t  
y = 0 the modes behave as exp (k) and, upon interchanging y with yo, we find that the 
receptivity, as defined’above, varies as exp(k) or as exp(-w,). In a nutshell, the 
exponential increase in the receptivity with frequency at  (say) y = 1, due to a source 
at  yo = 0, is caused by the exponential decrease in the mode between the two points 

At a given frequency (say, -w , /AU = 0.3), the receptivity of the shear layer 
decreases as the dipole is moved away from the centreline. This behaviour is 
consistent with our findings for a wave packet, and it is also an immediate 
consequence of the explanation given in the preceding paragraph. Note that, 
generally, this decrease in receptivity is accepted on physical grounds, based on the 
argument that a flow is the most sensitive to perturbations that occur near the region 
at  which the phase speed and fluid speed are equal. Furthermore, a given change in 
the source location is more significant a t  higher frequencies (the important parameter 

y = o ,  1. 
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FIGURE 9. Normalized receptivity as a function of frequency for parametric values of velocity 
ratio R = AU/2U,,,(Um = 1 ,  yo = 0).  

is the change in yo per wavelength) so that one expects any two curves for two 
different values of yo to diverge with frequency. This is indced what happens in 
figure 7. 

I n  order to gain a deeper understanding of how the position of the dipole affects 
the transverse component of the velocity a t  the upper edge (y = l ) ,  we show the 
receptivity of our shear layer as a function of source location for (approximately) the 
most unstable frequency (figure 8). It is interesting t o  note that the curve is not 
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exact'ly symmetric about yo = 0. The bias in the receptivity toward the low-speed 
side of the layer is caused by a similar bias of the spatial instability mode itself 
(Michalke 1965). All other things being equal, perturbations at the low-speed side 
result in larger disturbances in the flow than do perturbations a t  the high-speed 
side. 

Finally, in figure 9, we show the dependence of the normalized receptivity RIAU 
on the velocity ratio, R = AUIZU,, for a dipole located on the centreline. These 
results, together with the uppermost curve in figure 7,  show that the receptivity R 
is roughly proportional to the velocity ratio a t  fixed values of the shear-layer average 
velocity U,. In  other words, a t  a given frequency, a*, and Urn, the receptivity varies 
directly as AU,  

The author is grateful to Professor P.  Huerre for an advance copy of the paper by 
Huerre and Monkewitz. Much of the present work was motivated by a seminar given 
by Dr. Huerre a t  the University of Arizona. The financial support of the NASA Lewis 
Research Center is also acknowledged. 

Appendix A 
We sketch here the solution of our governing equations (6a ,  b )  for the given initial 

and boundary conditions. As remarked in the main section of this paper, the vorticity 
equation for the piecewise linear base flow can be integrated once and for all. In  terms 
of the Fourier transform of the transverse perturbation velocity 6, we must solve the 
equation 

(&k2)6 = x(k,t)S(y-yo), (A 1 )  

where k is the axial wavenumber, yo is the transverse location of the dipole (figure l ) ,  
U ,  = U(yo) and 

(A 2) 
k2 

(27r)Y ~ ( k ,  t )  = exp ( - ikU, t )  

and we have assumed that t > 0. 
The reader should observe that the notation in this Appendix is self-contained and 

may depart slightly from that in the main body of this paper. Whenever this occurs, 
we point out explicitly this difference. 

The principal task ahead of us is to solve (A 1)  with decaying boundary conditions 
as Iyl+ 00 and suitable matching conditions across the interfaces a t  y = f 1.  Let us 
first concentrate on the case when the dipole is located within the shear layer, I yo] < 1. 

For this case there are four regions of interest, and in each of these, the solution 
for 6 can be written as a linear combination of exp ( +KY), where K is the correctly 
chosen square root, (A?); as given by (8). By elementary considerations we have 

v=[ r( A cosh [ ~ ( y -  i)] + C  sinh [ ~ ( y -  l ) ]  (yo < y < l) ,  
(Y 2 

B cosh [K(Y+ i)] + E sinh [K(Y+ i)] ( - 1 < y < yo), 

(Y < - I ) ,  B e + K ( Y + l )  

A e-K(Y-l) 

(A 3) 

where (A 3) already satisfies the decaying boundary conditions at Iyl+ m and the 
continuity of 6 across the interfaces. Note that A ,  B, C and E are coefficients 
depending on time (but not on y). 
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We shall use A = A(t)  and B = B(t) as our principal variables since C(t) and E(t) 
can be readily expressed in terms of the former. This is accomplished by enforcing the 
usual matching conditions across the source location y = yo. The final result is 

s i n h 2 ~  = 
E - B  

The equations for A(t) and B(t) come from the requirement that the Fourier 
transform of the pressure is continuous across the interfaces. This requirement can 
be readily satisfied by using the linearized x-component of the momentum equations. 
After some straightforward algebra we arrive a t  

If: ikj(k, t) sinh[K(YO* ( uo-{;:), (A 5 )  
K 

where (:) = (.)exp(+ikU,t), Urn = $(U,+U,) and AU = U,-U,. Note, in par- 
ticular, that (? )  does not denote complex conjugation. The time derivatives in (A 5 )  
come from the fact that the x-component of the momentum equation contains the 
term au/at. The choice of the tilde variables makes (A 5 )  entirely symmetric and it 
is essentially equivalent to a Galilean transformation in which the observer is moving 
a t  the average shear-layer velocity Urn. 

If we diagonalize the left-hand side of (A 5 ) ,  we simplify the equations for A” and 
B.  We also give these equations for reference: 

The two inhomogeneous terms S, and S, are given by 

s -  2(k: t ,  {(uo-ul) sinh[K(yO+ l)]-(Uo-U2)e-zK sinh[~(y~-l)]} ,  
- 2AU sinh 2~ 

(A 6n 

s -  a(k: t, { (U ,  - U,) eKzK sinh [K (  yo + l)] - ( U ,  - U,) sinh [ K (  yo - l)]}. 
- 2AU sinh 2~ 

(A 6g) 

The final step is to solve (A 6a)  explicitly with the given initial conditions. Rather 
than enforcing the null initial conditions at  t = 0-, it is far more convenient to 
transfer these conditions to t = O+ by integrating (1 a, b )  across t = 0. In  other words, 
the instant after the dipole has been switched on, we find 



176 T .  F. Balsa 

In  order to write down the solution of (A 6a)  with initial conditions (A 7) ,  we need 
some preliminary definitions. Let 

h(k)  = (1 - ~ K ) z ] : ) ,  (A 8a)  

and g ( k )  = ( ; K Y 0 ) ' + h 2 ( k ) ,  (A 8 b )  

Finally, the solutions for act) and B(t) become 

eAT{[A(O+)-a] (h+ia,,)+ia,,[B(O+)-b]) 
2h 

act) = 

e-"'{ -ia,,[B(O+)-b]+ [ A ( ( ) + ) - a ]  (A-iu,,)} 
2h 

+ 
+aexp[-ik(U,-U,)t], ( A 9 a )  

I ( A  - ia,,) ( A  + iall) 

ia,, 
&'{ [A(O+) -a] +[B(O+)-b] (h-iull) 

2h 
B(t)  = 

I ( A  - iu,,) ( A  + iu,,) 

4, 
-[A(O+)-a] + [B(O+) - b] ( A  + ial1) 

2h 
+ 

+bexp[-ik(UO-UU,)t], (A9b)  

where, in (A 9a ,  b ) ,  the quantities a ,  A, etc. are evaluated at  k [i.e. a = a(k ) ,  etc.] and 
7 = d u t k / K .  

We now recognize A(O+) and B(O+) as essentially A ,  and R, of ( l o b )  and the first 
two terms of (A 9a) without the factors exp ( & A T ) ,  correspond to 9, and 9, of (9). 

When the dipole is located outside the shear layer ( ix .  lyol > i ) ,  we have the 
somewhat simpler result a = b = 0. In other words, the inhomogeneous terms S, and 
S ,  on the right-hand side of (A cia) arc idcntically zero. Furthermore, 

where sgn (yo) = f 1 according to yo > 0 or yo < 0. Otherwise, (A 9a, b )  hold for a(t) 
and B(t). 
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